
AN OVERVIEW OF RINGS AND MODULES

FELIX GOTTI

Preliminaries

General Notation. In what follows, P, N, and N0 denote the sets of primes, positive integers, and
nonnegative integers, respectively. As it is customary, we let Z, Q, and R denote the set of integers,
rational numbers, and real numbers, respectively. In addition, for any b, c ∈ Z with b ≤ c, we let Jb, cK
denote the discrete interval from b to c:

Jb, cK := {n ∈ Z : b ≤ n ≤ c}.

Commutative Semigroups and Abelian Groups. A binary operation on a set S is a function
∗ : S×S → S. When ∗ si a binary operation on a set S, it is customary to write s ∗ t instead of ∗(s, t)
for any s, t ∈ S. A pair (S, ∗), where S is a set and ∗ is a binary operation on S is called a semigroup
provided that the operation ∗ is associate: r ∗ (s ∗ t) = (r ∗ s) ∗ t for all r, s, t ∈ S.

Let (S, ∗) be a semigroup. An element e ∈ S is called an identity element of S if e∗s = s∗e = s for
all s ∈ S. Every semigroup has at most one identity element: indeed, if e1, e2 ∈ S are both identity
elements, then e1 = e1 ∗ e2 = e2. The semigroup (S, ∗) is said to be commutative if s ∗ t = t ∗ s for all
s, t ∈ S. A semigroup having an identity element is called a monoid.

Let (M, ∗) be a monoid with identity element denoted by e, and let us denote (M, ∗) simply by M .
An element u ∈ M is called invertible or a unit if u∗ v = v ∗u = e for some v ∈ M , in which case such
an element v is called an inverse of u. As the identity element e ∈ M satisfies e ∗ e = e, it is its own
inverse and, therefore, a unit. In a monoid, every unit has a unique inverse: indeed, if v1, v2 ∈ M are
two inverses of a unit u, then v1 = v1 ∗ (u ∗ v2) = (v1 ∗ u) ∗ v2 = v2. The monoid M is called a group
if every element of M is a unit. A group is said to be abelian if it is a commutative monoid.

A subset S of M is called a submonoid of M if S contains the identity element of M and is closed
under the operation of M , which means that b ∗ c ∈ S for all b, c ∈ S. A submonoid of M which is
a group is called a subgroup of M . If S is a submonoid (resp., a subgroup) of M such that S ̸= M ,
then S is called a proper submonoid (resp., subgroup) of M . It is routine to prove that the property
of being submonoids of a given monoid is preserved under taking arbitrary intersections.

Let N denote a monoid (N, ∗′) with identity element eN . A function φ : M → N is called a monoid
homomorphism if φ(e) = eN and φ(b ∗ c) = φ(b) ∗′ φ(c) for all b, c ∈ M . If φ : M → N is a bijective
homomorphism, then φ is called a monoid isomorphism and, in this case, we say that the monoids M
and N are isomorphic. If both M and N are groups, a monoid homomorphism φ : M → N is called
a group homomorphism, and a bijective group homomorphism is called a group isomorphism.

Let (G, ∗) be an abelian group with identity element e, and let H be a subgroup of G. For each
g ∈ G, the subset {g ∗ h : h ∈ H} of G, which is denoted by g ∗H, is called a coset of G by H. Let
G/H denote the set consisting of all the cosets of G by H, and define ∗′ on G/H as follows:

g1H ∗′ g2H := (g1 ∗ g2) ∗H
for any cosets g1H and g2H of G/H. It is routine to verify that ∗′ is well defined and also that G/H
is an abelian group with respect to ∗′, which is called the quotient group of G by H. The binary
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operation of the quotient group G/H is often denote as that of G, in this case, ∗. The following
theorem is known as the First Isomorphism Theorem.

Theorem 1. Let G and G′ be abelian groups (multiplicatively written), and let φ : G → G′ be a group
homomorphism. Then φ(G) and kerφ := {g ∈ G : φ(g) = 1} are subgroups of G′ and G, respectively,
In addition, G/ kerφ and φ(G) are isomorphic abelian groups.

Proof. This is routine, and we leave it as an exercise. □

1. Commutative Rings: Homomorphisms and Ideals

1.1. What is a Commutative Ring? We are in a position to bring the definition of a commutative
ring with identity, the most relevant algebraic objects in the scope of this exposition.

Definition 2. A triple (R,+, ·), where R is a set and + and · are two binary operations on R, is
called a ring if the following conditions hold:

• (R,+) is an abelian group,

• (R, ·) is a semigroup, and

• r · (s+ t) = r · s+ r · t and (s+ t) · r = s · r + t · r for all r, s, t ∈ R.

Let (R,+, ·) be a ring and, from now on, let us denote this triple simply by R (this is customary in
the literature). The identity of the monoid (R,+), is denoted by 0 and called the zero element of R or
simply zero. For all r ∈ R, the equality 0·r = 0 holds: it can be deduced from 0·r = (0+0)·r = 0·r+0·r,
as 0 ·r has an additive inverse. Similarly, r ·0 = 0 for all r ∈ R. For r, s ∈ R, we write rs instead of r ·s
if we see not risk of confusion. We say that R is commutative if the semigroup (R, ·) is commutative.
In addition, we say that an element of R is an identity if it is an identity of the semigroup (S, ·).
Thus, if R contains an identity, then it must be unique and we denote it by either 1R or 1 and refers
to it as the identity element. In the scope of this exposition, we are only interested in commutative
rings with identity, and we tacitly assume that the identity is not the zero element (otherwise, R is a
singleton, which is not an interesting case to consider).

For a commutative ring R with identity, we let R× denote its group of units (i.e., invertible elements)
of R. For r, s ∈ R, we say that s divides r and write s |R r if r = st for some t ∈ R. Elements r, s ∈ R
are associates if s = ur for some u ∈ R×.

An additive subgroup S of R is called a subring if S is closed under multiplication and contains
1. Clearly, a subring of R is a commutative ring with identity under the binary operations it inherits
from R.

1.2. Ideals. Let R be a commutative ring with identity 1. An additive subgroup I of R is called an
ideal if ra ∈ I for all r ∈ R and a ∈ I. The intersection of ideals of R is again an ideal. We can also
add, multiply, and take quotients of ideals. Let I and J be ideals of R. The set

I + J := {a+ b : a ∈ I and b ∈ J}
is an ideal of R, which is called the sum of I and J . The sum of finitely many ideals is defined
similarly. If I = Ra for some a ∈ R, then I is called principal, in which case, we also write I = (a).
More generally, if I = Ra1 + · · · + Ran for some a1, . . . , an ∈ R, then I is called finitely generated.
The set

IJ :=
{ n∑

i=1

aibi : n ∈ N, ai ∈ I, and bi ∈ J
}
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is an ideal of R, which is called the product of I and J . We can naturally extend this to the product
of finitely many ideals and, accordingly, we let In denote the product of n copies of I and call it the
n-th power of I. It is clear that IJ ⊆ I ∩ J . Finally,

(J : I) :=
{
r ∈ R : rI ⊆ J}

is also an ideal of R, and it is often called the colon (or the quotient ideal) of J by I. The verification
that I ∩ J , I + J , IJ , and (J : I) are ideals of R is routine, and we leave this task to the reader.

1.3. Quotients and Homomorphisms. Ideals are quite relevant in commutative ring theory: in-
deed, we can quotient R by a given ideal I to obtain another ring R/I that is often simpler than R
but inherits a significant amount of algebraic information from R. To formally describe such quotient
ring, let I be an ideal of R and consider the following . The quotient group R/I is a ring under the
operation (r + I)(s+ I) := rs+ I, which is called the quotient ring of R by I. It is clear that R/I is
a commutative ring with identity element 1 + I.

The group homomorphism π : R → R/I is indeed a ring homomorphism. If f : R → S is a ring
homomorphism, then ker f = {r ∈ R : f(r) = 0} is an ideal of R, the set f(R) is a subring of S, and
the assignment r+ker f 7→ f(r) determines a ring isomorphism R/ ker f ∼= f(R). On the other hand,
if I ⊆ ker f , then f factors through π, that is, there exists a unique ring homomorphism φ : R/I → S
such that f = φ ◦ π.

If I is an ideal of R and S is a subring of R, then I + S is a subring of R and I ∩ S is an ideal
of S. In addition, it is not hard to verify that the assignment s 7→ s + I determines a surjective
ring homomorphism S → (I + S)/I with kernel I ∩ S (this is often called the Second Isomorphism
Theorem). On the other hand, if J is an ideal of R with I ⊆ J , then the assignment r + I 7→ r + J
determines a surjective ring homomorphism R/I → R/J with kernel J/I (this is often called the
Third Isomorphism Theorem). Finally, the assignment T 7→ T/I for any subring (resp., ideal) T of R
induces an inclusion-preserving bijection from the set of all subrings (resp., ideals) of R containing I
to the set of all subrings (resp., ideals) of R/I.

Prime and Maximal Ideals. A proper ideal P of R is prime if whenever IJ ⊆ P for ideals I and
J in R, either I ⊆ P or J ⊆ P . In addition, a proper ideal M of R is maximal if for any ideal I with
M ⊆ I ⊆ R, either I = M or I = R.

Proposition 3. Let R be a commutative ring with identity, and let I be an ideal of R. Then the
following statements hold.

(1) I is prime if and only if R/I is an integral domain.

(2) I is maximal if and only if R/I is a field.

Proof. (1) Since r ∈ I if and only if r + I = I for all r ∈ R, this part follows immediately from the
fact that rs ∈ I if and only if (r + I)(s+ I) = I for all r, s ∈ R.

(2) It is clear that a commutative ring with identity is a field if and only if it has precisely two
ideals (the trivial ideals). Thus, this part is a direct consequence from the fact that the assignment
J 7→ J/I induces a bijection from the set of ideals of R containing I to the set of ideals of R/I. □

Corollary 4. Every maximal ideal is prime.

Not every prime ideal, however, is maximal. For instance, in the ring Z[x] the ideal (x) is prime,
but it is not maximal because (x) is strictly contained in the ideal (x, 2), which is a proper ideal of
Z[x].
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2. Integral Domains from the Fundamental Theorem of Arithmetic

Let R be an integral domain, that is, a commutative ring with identity with no nonzero zero-
divisors. We say that a nonzero nonunit r ∈ R is irreducible if whenever r = uv for some u, v ∈ R
either u ∈ R× or v ∈ R×.

Example 5. The prototypical integral domain is Z, the ring of integers.

According the most standard version of the Fundamental Theorem of Arithmetic (FTA), every
nonzero integer z with z /∈ {±1} can be factored as z = p1 · · · pn for some p1, . . . , pn ∈ ±P and such a
factorization is unique (up to permuting and multiplying the factors by ±1).

UFDs, PIDs, and Euclidean Domains

A nonzero element r ∈ R \R× is prime if whenever r |R st for some s, t ∈ R either r |R s. It is not
hard to verify that every prime is irreducible (prove this!).

Definition 6. An integral domain is a unique factorization domain (UFD) if for every nonzero
r ∈ R \R×, the following statements hold:

(1) r = p1 · · · pm for some irreducibles p1, . . . , pm ∈ R, and

(2) if r = q1 · · · qn for irreducibles q1, . . . , qn ∈ R, then n = m and there is a bijection φ : J1,mK →
J1,mK such that qφ(j) and pj are associates for every j ∈ J1,mK.

Every field is trivially a UFD, and Z is a UFD by the Fundamental Theorem of Arithmetic. We
will prove in the next subsection that the rings of polynomials Z[x] and Z[x, y] are UFDs.

Proposition 7. Let R be a UFD. An element of R is prime if and only if it is irreducible.

Proof. In every integral domain, primes are irreducibles, and we leave the verification of this fact to
the reader. Now suppose that p ∈ R is an irreducible. To check that p is prime, take r, s ∈ R such
that p |R rs, and then write pt = rs for some t ∈ R. As R is a UFD, we can factor t, r, and s into
irreducibles to obtain factorizations of the same element in both sides of the equality pt = rs. Since
p is irreducible and R is a UFD, p is associate with one of the irreducibles in the factorization of rs,
and so either p |R r or p |R s. Hence p is prime. □

Integral domains whose ideals are principal play an important role in commutative ring theory.

Definition 8. An integral domain R is called a principal ideal domain (PID) if every ideal of R is
principal.

Every field is clearly a PID. It is not hard to verify that Z is a PID, although it follows from
Theorem 15 below. We will prove in the next theorem that every PID is a UFD. First, we need to
collect the following temporary result (once we prove Theorem 10, this lemma will become a special
case of Proposition 7).

Lemma 9. If R is a PID, then every irreducible in R must be prime.

Proof. Let p be an irreducible in R, and let I be an ideal containing Rp. Since R is a PID, I = Ra for
some a ∈ R. After writing p = ab for some b ∈ R, we see that either a ∈ R× or b ∈ R×. Accordingly,
we find that I = R or I = Rp. Hence the only ideal properly containing Rp is R, which means that
Rp is a maximal ideal and, therefore, a prime ideal. Hence p is prime. □

Theorem 10. Every PID is a UFD.
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Proof. Let R be a PID. Suppose, by way of contradiction, that there is a nonzero element r0 ∈ R\R×

that does not factor into irreducibles. So r0 = r1s1 for some r1, s1 ∈ R \ R× such that r1 does not
factor into irreducibles. As before, we can write r1 = r2s2 for some r2, s2 ∈ R \ R× such that r2
does not factor into irreducibles. Going on in a similar fashion, we can construct sequences (rn)n∈N0

and (sn)n∈N with rn, sn ∈ R \ R× such that rn = rn+1sn+1. Thus, the sequence (Rrn)n∈N0 of ideals
satisfies that Rrn ⊊ Rrn+1 and, therefore, I =

⋃
n∈N0

Rrn is an ideal. Since R is a PID, there is
an a ∈ R such that I = Ra. Take an m ∈ N such that a ∈ Rrm. This implies that I = Rm, and
so Rrm+1 = Rrm. In this case, rm and rm+1 are associates, which contradicts that Rrn+1 strictly
contains Rrn. Hence every nonzero element of R \R× is a product of irreducibles.

Let us prove now that every nonzero element in R\R× has a unique factorization up to permutation
and associate. To do so we use induction on the number of irreducible factors (counting repetitions).
If a nonzero r in R \ R× has a factorization consisting of only one irreducible, then r itself must be
irreducible and r = q1 · · · qn for irreducibles q1, . . . , qn immediately implies that n = 1 and q1 = r.
So assume that there is an m ∈ N such that every nonzero in R \ R× having a factorization with at
most m irreducibles (counting repetitions) must have a unique factorization. Take r ∈ R \ R× such
that r = p1 · · · pm+1 for irreducibles p1, . . . , pm+1 in R. Suppose that r = q1 · · · qn for irreducibles
q1, . . . , qn. Since pm+1 is prime by Lemma 9, one of the irreducibles q1, . . . , qn is divisible by pm+1.
After relabeling q1, . . . , qn, one can assume that pm+1 |R qn and so that pm+1 and qn are associates.
Take u ∈ R× such that qn = upm+1. Then p1 · · · pm = (uq1)q2 · · · qn−1. By induction hypothesis,
n− 1 = m and we can relabel q1, . . . , qm such that pi and qi are associates for every i ∈ J1,mK. Hence
R is a UFD. □

The converse of Theorem 10 does not hold.

Example 11. Consider the ring Z[x]. We will show in the next section that R[x] is a UFD provided
that R is a UFD. Therefore Z[x] is a UFD. On the other hand, one can easily verify that the ideal
(2, x) is not principal (check this!). Hence Z[x] is not a PID.

The Euclidean division algorithm is an important tool we have at our disposal in Z. We can consider
generalizations of the ring Z where still we can perform the Euclidean division algorithm. Such rings
are called Euclidean domains.

Definition 12. An integral domain R is called a Euclidean domain if there is a map N : R → N0,
called a norm, such that N(0) = 0 and for any elements a, b ∈ R with b ̸= 0, there are elements
q, r ∈ R such that a = qb+ r and either r = 0 or N(r) < N(b).

Every field F is a Euclidean domain under the norm N(α) = 0 for every α ∈ F (indeed, any
norm can be taken). In addition, Z is a Euclidean domain under the norm N(m) = |m|. The ring
Z[i] := {a+ ib : a, b ∈ Z} of Gaussian integers is also a Euclidean domain.

Example 13. Let us argue that the ring Z[i] of Gaussian integers is a Euclidean domain. Consider
N : Z[i] → N0 defined by N(a+ ib) = a2+b2. As N(α) = αᾱ, it is clear that N(α1α2) = N(α1)N(α2).
Take α, β ∈ Z[i] such that β ̸= 0, and write α/β = q1+ iq2, where q1, q2 ∈ Q. Now take m,n ∈ Z such
that |q1 −m| ≤ 1/2 and |q2 − n| ≤ 1/2, and then set q = m+ in ∈ Z[i] and r = α− qβ ∈ Z[i]. Since

N(r) = N(β)N
(α
β
− q

)
= N(β)

(
|q1 −m|2 + |q2 − n|2

)
≤ N(β)

2
< N(β),

we obtain that Z[i] is a Euclidean domain.

Polynomial rings over fields are also examples of Euclidean domains.

Proposition 14. If F is a field, then F [x] is a Euclidean domain.
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Proof. Let F be a field. Define N : F [x] → N0 by N(0) = 0 and N(p(x)) = deg p(x). Now, let
f(x) and g(x) be any two polynomials in F [x] with g(x) ̸= 0. We want to find q(x) and r(x) in
F [x] with f(x) = g(x)q(x) + r(x) such that either r(x) = 0 or N(r(x)) < N(g(x)). We proceed by
induction on deg f(x). If deg f(x) = 0, then f(x) ∈ F , and so we take q(x) = r(x) = 0 if f(x) = 0
or q(x) = f(x)/g(x) and r(x) = 0 if f(x) ∈ F×. Therefore assume that n := deg f(x) ∈ N and
also that the statement of the proposition follows for any pair of polynomials f ′(x), g′(x) ∈ F [x] with
deg f ′(x) < n and g′(x) ̸= 0. If n < deg g(x), then we simply take q(x) = 0 and r(x) = f(x). Thus,
we assume that deg f(x) ≥ deg g(x).

Set m := deg g(x), and let an and bm be the leading coefficients of f(x) and g(x), respectively.
Observe that f1(x) := f(x)−(anb

−1
m )xn−mg(x) has degree strictly less than deg f(x). By the induction

hypothesis, we can find polynomials q1(x) and r(x) in F [x] with f1(x) = g(x)q1(x) + r(x) such that
either r(x) = 0 or deg r(x) < deg g(x). Now, set q(x) := q1(x) + (anb

−1
m )xn−m, and observe that

f(x) = f1(x) + (anb
−1
m )xn−mg(x)

= g(x)q1(x) + r(x) + (anb
−1
m )xn−mg(x)

= g(x)q(x) + r(x).

Hence our proof is complete. □

We proceed to show that every Euclidean domain is a PID.

Theorem 15. Every Euclidean domain is a PID.

Proof. Let R be a Euclidean domain with norm N : R → N0. Take a nonzero ideal I of R. Let b
be a nonzero element of I having minimum norm. We claim that I = Rb. Clearly, Rb ⊆ I. For the
reverse inclusion, consider a ∈ I. Since R is a Euclidean domain, a = qb+ r for some q, r ∈ R, where
either r = 0 or N(r) < N(b). Since r = a − qb ∈ I, the minimality of N(b) ensures that r = 0, and
so a = qb ∈ I. As a result, the inclusion I ⊆ Rb holds and, therefore, I is principal. Hence R is a
PID. □

We conclude this subsection emphasizing that not every PID is a Euclidean domain. However,
examples witnessing this are not that easy to construct. One of the most tractable examples is Z[ω],
where ω := (1 + i

√
19)/2. The fact that Z[ω] is a PID that is not a Euclidean domain is discussed

in [1, Subsections 8.1 and 8.2].

3. Polynomials Rings

The field of fractions of an integral domain is a construction that allows us to create a field from
an integral domain in the same fashion that Q is constructed from Z. Let R be an integral domain,
and consider the set

S := {(a, b) | a, b ∈ R and b ̸= 0}.
Also, consider the binary relation ∼ on R defined as (a, b) ∼ (c, d) if and only if ad = bc. One can
easily check that ∼ is an equivalence relation on R. Now let a/b denote the equivalence class of (a, b)
in S/ ∼, and set

K :=
{a

b

∣∣ a, b ∈ R and b ̸= 0
}
.

We can naturally define addition and multiplication operations on K as follows:

a

b
+

c

d
:=

ad+ bc

bd
and

a

b
· c
d
:=

ac

bd
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for all a, b, c, d with bd ̸= 0. It is routine to show that K is indeed a field, which is denoted by qf(R)
and called the quotient field (or field of fractions) of R. Furthermore, we can readily prove that the
assignment r 7→ r/1 determines a ring homomorphism R → qf(R) and also that every injective ring
homomorphism from R to a field F can be uniquely extended to a ring homomorphism from qf(R) to
F . This property makes qf(R) a very useful tool for studying the properties of R and its extensions.
We summarize this as the following proposition.

Proposition 16. Let R be an integral domain. Then the following statements hold.

(1) qf(R) is a field.

(2) The map ι : R → qf(R) determined by r 7→ r/1 is a ring homomorphism.

(3) If F is a field and f : R → F is a a ring homomorphism, then there exists a unique ring
homomorphism f̄ : qf(R) → F such that f̄(r/1) = f(r) for every r ∈ R.

Proof. Exercise. □

We turn our attention to rings of polynomials over UFDs. The following criterion is quite useful
to argue the irreducibility of polynomials over UFDs.

Theorem 17 (Gauss’s lemma). Let R be a UFD, and let p(x) be a polynomial in R[x]. If p(x) =
a(x)b(x) for some a(x), b(x) ∈ qf(R)[x], then there exists c ∈ qf(R)× such that ca(x) ∈ R[x] and
c−1b(x) ∈ R[x].

Proof. Assume that p(x) = a(x)b(x) for some a(x), b(x) ∈ qf(R)[x]. If a(x), b(x) ∈ R[x], then we can
take c = 1. We will assume, therefore, that this is not the case, and write dp(x) = a′(x)b′(x) for
some d ∈ R \ R× and a′(x), b′(x) ∈ R[x]. Since R is a UFD, we can take irreducibles p1, . . . , pn such
that d = p1 · · · pn. Set J = pnR[x] and observe that R[x]/J ∼= (R/Rpn)[x] is an integral domain, and
so J is a prime ideal of R[x]. Since (a′(x) + J)(b′(x) + J) = dp(x) + J = J , the fact that R[x]/J
is an integral domain implies that either a′(x) ∈ J or b′(x) ∈ J . Assuming the former, we obtain
that a′(x)/pn ∈ R[x] and so the equality (d/pn)p(x) = (a′(x)/pn)b

′(x) takes place in R[x]. One
can proceed similarly with the rest of the irreducibles p1, . . . , pn−1 in the factorization of d to find
d1, d2 ∈ R with d1d2 = d such that both a′(x)/d1 and b′(x)/d2 belong to R[x]. Now we just need to
take c = d−1

1 a′(x)/a(x). □

Corollary 18. Let R be a UFD, and let p(x) be a nonzero polynomial in R[x] such that 1 is a
greatest common divisor of the coefficients of p(x). Then p(x) is irreducible in R[x] if and only if it
is irreducible in qf(R)[x].

We are in a position now to prove the following promised result.

Theorem 19. If R is a UFD, then R[x] is a UFD.

Proof. Let R be a UFD, and take a nonzero polynomial p(x) ∈ R[x]. It is not hard to see that the
irreducibles of R are still irreducibles in R[x]. Therefore if p(x) ∈ R, then p(x) factors uniquely into
irreducibles. Accordingly, assume that p(x) is a non-constant polynomial. In addition, if d is a greatest
common divisor of the coefficients of p(x) and p′(x) := p(x)/d, then p(x) = dp′(x) factors uniquely into
irreducibles in R[x] provided that p′(x) factors uniquely into irreducibles in R[x]. So we can further
assume that 1 is a greatest common divisor of the coefficients of p(x). As qf(R)[x] is a Euclidean domain
and so a UFD, p(x) = p′1(x) · · · p′m(x) for unique irreducibles p′1(x), . . . , p

′
m(x) in qf(R)[x]. It follows

now by Gauss’s lemma that p(x) = p1(x) · · · pm(x), where the polynomials p1(x), . . . , pm(x) ∈ R[x] are
F -multiples of p′1(x), . . . , p

′
m(x), respectively. Since 1 is a greatest common divisor of the coefficients

of p(x), the same holds for p1(x), . . . , pm(x). So it follows from Corollary 18 that p1(x), . . . , pm(x) are
irreducibles in R[x].
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In order to argue the uniqueness, suppose that p(x) = q1(x) . . . qn(x) for irreducibles polynomials
q1(x), . . . , qn(x) in R[x]. Since 1 is a greatest common divisor of the coefficients of p(x), the same holds
for q1(x), . . . , qn(x). In particular, q1(x), . . . , qn(x) are non-constant, and it follows from Corollary 18
that they are irreducibles in qf(R)[x]. Since qf(R)[x] is a UFD, n = m and, after relabeling the
indices of q1(x), . . . , qm(x), we obtain that aipi(x) = biqi(x), where ai, bi ∈ R, for every i ∈ J1,mK.
Fix i ∈ J1,mK. Since 1 is a greatest common divisor of the coefficients of qi(x), every prime in a
factorization of ai in R, which is also a prime in R[x], must divide bi, and so ai divides bi in R.
Similarly, bi divides ai in R, and so bi = uai for some u ∈ R×. This implies that pi(x) and qi(x) are
associates in R[x]. Hence the uniqueness follows, and so R[x] is a UFD. □

When used in tandem, Corollary 18 and Proposition 20 (known as Eisenstein’s criterion) are prac-
tical tools to argue that certain polynomials are irreducibles.

Proposition 20. Let R be an integral domain, and let p(x) = anx
n + · · ·+ a1x+ a0 be a polynomial

in R[x]. If there exists a prime ideal P of R such that

(1) an /∈ P ,

(2) a0, . . . , an−1 ∈ P , and

(3) a0 /∈ P 2,

then p(x) cannot be written in R[x] as a product of two non-constant polynomials. In addition, if 1 is
a greatest common divisor of the coefficients of p(x), then p(x) is irreducible.

Proof. Suppose, by way of contradiction, that p(x) = a(x)b(x) for non-constant polynomials a(x), b(x) ∈
R[x]. Then a′(x)b′(x) = (an + P )xn in (R/P )[x], where a′(x) and b′(x) are the images of a(x) and
b(x) under the canonical homomorphism R[x] → (R/P )[x]. Since (R/P )[x] is an integral domain and
(an + P )xn is nonzero in (R/P )[x], both a′(x) and b′(x) are nonzero. This, together with the fact
that (an +P )xn is a monomial, ensures that the constant coefficients of both a′(x) and b′(x) equal P
in (R/P )[x], that is, a(0) ∈ P and b(0) ∈ P . However, this contradicts that a0 /∈ P 2. □

We conclude with an application of Eisenstein’s criterion.

Example 21. For each p ∈ P, we will argue that the polynomial f(x) = xp−1+· · ·+x+1 is irreducible
in Q[x]. Since f(x) is monic, in light of Corollary 18 it suffices to show that f(x) is irreducible in Z[x].
Observe that f(x) is irreducible if and only if f(x+ 1) is irreducible. Since xp − 1 = (x− 1)f(x), we
see that

(3.1) f(x+ 1) =
(x+ 1)p − 1

x
=

p∑
k=1

(
p

k

)
xk−1.

From the summation in (3.1), it is clear that f(x+1) is a monic polynomial having all its non-leading
coefficients divisible by p. In addition, the constant coefficient of f(x+ 1) is p, which is not divisible
by p2. So by virtue of Eisenstein’s criterion, f(x + 1) is irreducible, as desired. Moreover, for every
n ≥ 2, it is easy to verify that the polynomial xn−1+ · · ·+x+1 is irreducible if and only if n is prime.
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4. Noetherian Rings

In this subsection, we introduce one of the most relevant classes of rings in commutative algebra,
Noetherian rings.

Definition 22. A commutative ring R with identity is Noetherian if every ascending chain of ideals
of R eventually stabilizes; that is, for every sequence (In)n∈N of ideals of R with In ⊆ In+1 for every
n ∈ N, there exists N ∈ N such that In = IN for every n ≥ N .

The term “Noetherian” honors Emmy Noether, who first investigated chain conditions on commu-
tative rings in her celebrated paper [3]. We can characterize Noetherian rings as follows.

Proposition 23. For a commutative ring R, the following statements are equivalent.

(a) R is Noetherian.

(b) Every nonempty set of ideals of R contains a maximal element (under inclusion).

(c) Every ideal of R is finitely generated; that is, if I is an ideal of R, then there exist a1, . . . , an ∈
R such that I = Ra1 + · · ·+Ran.

Proof. (a) ⇒ (b): Assume, by way of contradiction, that there is a nonempty set S consisting of
ideals of R that does not contain a maximal member. Take I1 ∈ S . Since I1 is not a maximal member
in S , we can take I2 ∈ S such that I1 ⊊ I2. Since I2 is not a maximal member of S , we can take
I3 ∈ S such that I2 ⊊ I3. Continuing in this matter we can produce an ascending chain (In)n∈N that
does not stabilize, which contradicts that R is Noetherian.

(b) ⇒ (c): Let I be an ideal of R, and let F be the set of finitely generated ideals of R contained in
I. Observe that F is not empty because it contains the zero ideal. Therefore F contains a maximal
member M by assumption. We can see now that I = M as, otherwise, for any x ∈ I \M the existence
of the finitely generated ideal M + xR would contradict the maximality of M . Hence I is finitely
generated.

(c) ⇒ (a): Let (In)n∈N be an ascending chain of ideals of R. Then I :=
⋃

n∈N In is also an ideal of
R, and since R is Noetherian we can write I = Ra1 + · · ·+Ran for some a1, . . . , an ∈ I. After taking
N ∈ N such that a1, . . . , an ∈ IN , we see that I ⊆ IN and so that IN = I. This clearly implies that
In = I for every n ≥ N , and so (In)n∈N eventually stabilizes. Hence R is Noetherian. □

Example 24. PIDs and, in particular, Euclidean domains are Noetherian rings. In addition, the
rings of integers of algebraic number fields are Noetherian, even though many of them are not PIDs.
On the other hand, not every UFD is Noetherian; for instance, Z[x1, x2, . . . ] is a UFD but its prime
ideal (x1, x2, . . .) is not finitely generated.

It is not hard to verify that quotients and, therefore, homomorphic images of Noetherian rings are
Noetherian rings.

Proposition 25. Let R be a Noetherian ring. Then R/I is also a Noetherian ring for every ideal I
of R.

Proof. Every ideal of R/I has the form J/I, where J is an ideal of R containing I. Fix an ideal
J/I of R/I. Since R is Noetherian, we can take r1, . . . , rn ∈ R such that J = (r1, . . . , rn). Hence
J/I = (r1 + I, . . . , rn + I), and so it is a finitely generated ideal. Thus, R/I is also Noetherian. □

A crucial tool to produce Noetherian rings is Hilbert Basis Theorem, which was established by D.
Hilbert [2] back in 1890.

Theorem 26 (Hilbert Basis Theorem). If R is a Noetherian ring, then R[x] is also a Noetherian
ring.
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Proof. For a nonzero f ∈ R[x], we let LC(f) denote the leading coefficient of f . Let J be an ideal of
R[x]. For each n ∈ N0, consider the set

In := {0} ∪ {LC(f) : f ∈ J \ {0} and deg f = n}.

Using that J is an ideal of R[x], we can easily verify that In is an ideal of R for every n ∈ N0. In
addition, observe that (In)n∈N0

is an ascending chain of ideals of R; indeed, it follows from the fact
that for each nonzero f ∈ R[x], the element LC(xf) ∈ In+1 provided that LC(f) ∈ In. As R is a
Noetherian ring, In is generated by a finite set Ln for every n ∈ N0 and there is an m ∈ N such that
In = Im for every n ≥ m. For each n ∈ N0 and c ∈ Ln, there exists gc ∈ J with deg gc = n such
that LC(gc) = c. Consider the subset L := {gc : c ∈

⋃m
n=1 Ln} of J , and let us argue that J can be

generated by L.

Let Jℓ be the ideal generated by L. As L ⊆ J , it follows that Jℓ ⊆ J . For the reverse implication,
we will argue that every nonzero polynomial f in J belongs to Jℓ by induction on the degree of f . If
deg f = 0, then f = LC(f) ∈ I0 ⊆ Jℓ. Now assume that deg f ≥ 1 and write f = cnx

n+ · · ·+ c1x+ c0
for some c0, . . . , cn ∈ R with cn ̸= 0, in which case, cn ∈ In. We consider the following two cases.

Case 1: n ≤ m. Write cn =
∑k

i=1 riℓi for some r1, . . . , rk ∈ R and ℓ1, . . . , ℓk ∈ Ln. Since n ≤ m,

the polynomial g :=
∑k

i=1 rigℓi belongs to Jℓ and has degree at most n. Indeed, deg g = n because
the coefficient of xn in g is cn. As Jℓ ⊆ J , the polynomial f − g belongs to J and, in addition, it has
degree strictly less than n. Hence f − g ∈ Jℓ by the induction hypothesis, and so f must belong Jℓ.

Case 2: n > m. In this case, cn ∈ In = Im, and we can write cn =
∑k

i=1 riℓi for some r1, . . . , rk ∈ R

and ℓ1, . . . , ℓk ∈ Lm. Consider the polynomial g :=
∑k

i=1 rigℓi , and note that it belongs to Jℓ and it
has degree at most m. Also, the coefficient of xm in g is cn. Therefore xn−mg is a polynomial of Jℓ
of degree at most n, which ensures that deg xn−mg = n because the coefficient of xn in xn−mg is cn.
This implies that f − xn−mg is a polynomial in J of degree less than n, and then it follows by the
induction hypothesis that f − xn−mg ∈ Jℓ. Hence f must belong to Jℓ.

As a result, J ⊆ Jℓ, and so J is finitely generated. Thus, we can conclude that R[x] is a Noetherian
ring. □

The following corollary is an immediate consequence of Hilbert Basis Theorem.

Corollary 27. If R is a Noetherian ring, then R[x1, . . . , xn] is a Noetherian ring.

Preliminary on Modules

Definitions and Examples. Modules over commutative rings are generalizations of vector spaces
that play a fundamental role in commutative algebra and, in particular, in ideal theory. For the rest
of this section, let R be a commutative ring with identity.

Definition 28. An additive abelian group M is a module over R (or an R-module) if there is an action
of R on M , that is, a map R×M → M given by (r,m) 7→ rm, satisfying the following properties:

(1) r(m1 +m2) = rm1 + rm2 for all r ∈ R and m1,m2 ∈ M ,

(2) (r1 + r2)m = r1m+ r2m for all r1, r2 ∈ R and m ∈ M ,

(3) (r1r2)m = r1(r2m) for all r1, r2 ∈ R and m ∈ M , and

(4) 1m = m for all m ∈ M .
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It is clear from the above definition that vector spaces are precisely modules over fields. On the
other hand, it is not hard to see that there is a canonical action of Z over any abelian group A turning
A into a Z-module, namely, na := a + · · · + a (the addition of n copies of a) and (−n)a := −na for
all n ∈ N0 and a ∈ A. Also, for n ∈ N, it is easy to verify that the additive abelian group Rn is an
R-module over R under the action r(a1, . . . , an) := (ra1, . . . , ran). Under this action, Rn is called the
free module of rank n over R.

Let M be an R-module. A subgroup N of M is called an R-submodule of M if it is is closed under
the action of R, that is, rn ∈ N for all r ∈ R and n ∈ N . One can readily prove that N is a submodule
of M if and only if N is nonempty and x+ry ∈ N for all r ∈ R and x, y ∈ N . Every commutative ring
R is an R-module over itself, and every ideal I of R is clearly an R-submodule. If N is an R-submodule
of M , then the quotient group M/N is an R-module under the action r(m+N) := rm+N .

For R-modules M1 and M2, a map φ : M1 → M2 is called an R-module homomorphism if φ is a
group homomorphism satisfying that φ(rm) = rφ(m) for all r ∈ R andm ∈ M . In this case, kerφ is an
R-submodule of M1, and it follows that φ is injective if and only if kerφ = {0}. When φ is bijective, it
is called an isomorphism of R-modules. The canonical group isomorphism M1/ kerφ ∼= φ(M1) (from
the First Isomorphism Theorem) is, indeed, an isomorphism of R-modules. If N1 and N2 are two
R-submodules of M , then the subgroups N1 +N2 and N1 ∩N2 are R-submodules, and the canonical
group isomorphism (N1 +N2)/N1

∼= N2/(N1 ∩N2) (from the Second Isomorphism Theorem) is also
an isomorphism of R-modules.

Finitely Generated Modules and Noetherian Modules. The R-module M is finitely generated
if there exist m1, . . . ,mn ∈ M such that M = Rm1 + · · ·+Rmn. Clearly, every commutative ring R
with identity is a finitely generated R-module over itself (generated by 1). In addition, quotient and
so homomorphic images of finitely generated R-modules are finitely generated.

Proposition 29. If N is an R-submodule of a finitely generated R-module M , then the quotient M/N
is also a finitely generated R-module.

Proof. See the proof of Proposition 25. □

Being finitely generated is transitive in the following sense.

Proposition 30. Let R,S, and T be commutative rings with identities. If S is a finitely generated
R-module and T is a finitely generated S-module, then T is a finitely generated R-module.

Proof. Since S is a finitely generated R-module, we can take s1, . . . , sm ∈ S such that S =
∑m

i=1 Rsi.
In addition, since T is a finitely generated S-module, we can take t1, . . . , tn ∈ T such that T =∑n

j=1 Stj . Thus, T =
∑n

j=1

(∑m
i=1 Rsi

)
tj =

∑m
i=1

∑n
j=1 Rsitj , whence T is a finitely generated

R-module. □

An R-module M is called Noetherian if every R-submodule of M is finitely generated. Not every
finitely generated R-module is Noetherian. For instance, although the ring R := Z[xn : n ∈ N]
in countably many variables over Z is a finitely generated R-module, its ideal (x1, x2, . . .) is an R-
submodule that is not finitely generated.

Example 31. Let V be a finite-dimensional vector space over a field F . Then every F -submodule of
V is a vector space of dimension at most dimV and, therefore, is finitely generated. As a result, V is
a Noetherian F -module.

As in the case of commutative rings, one can characterize Noetherian modules as follows.

Proposition 32. For an R-module M , the following statements are equivalent.
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(a) M is Noetherian.

(b) M satisfies the ascending chain condition (ACC) on submodules: every ascending chain of
R-submodules of M eventually stabilizes.

(c) Every nonempty set of R-submodules of M contains a maximal element (under inclusion).

Proof. Exercise. □

As for commutative rings, quotients of Noetherian modules are Noetherian. Moreover, we have the
following result.

Proposition 33. Let M be an R-module, and let N be a submodule of M . Then M is Noetherian if
and only if both N and M/N are Noetherian.

Proof. Suppose first that M is Noetherian. Clearly, every R-submodule of N is also an R-submodule
of M and, therefore, is finitely generated. Hence N is Noetherian. To verify that M/N is Noetherian,
take an R-submodule S/N of M/N , where S is an R-submodule of M . Since M is Noetherian
S = Rs1 + · · ·+Rsk for some s1, . . . , sk ∈ S. Hence it immediately follows that S/N = R(s1 +N) +
· · ·+R(sk +N), and so S/N is finitely generated. Thus, R/N is also Noetherian.

Conversely, suppose that both N and M/N are Noetherian R-modules. Let S be an R-submodule
of M , and let S′ be the R-submodule (S + N)/N of M/N . Since both N and M/N is Noetherian,
S ∩ N = Rm1 + · · · + Rmk and S′ = R(m′

1 + N) + · · · + R(m′
ℓ + N) for some m1, . . . ,mk ∈ S ∩ N

and m′
1, . . . ,m

′
ℓ ∈ S + N . Indeed, we can assume that m′

1, . . . ,m
′
ℓ ∈ S. Now take s ∈ S and write

s+N = r′1(m
′
1 +N) + · · ·+ r′ℓ(m

′
ℓ +N), where r′1, . . . , r

′
ℓ ∈ R. As s−

∑ℓ
j=1 r

′
jm

′
j ∈ N , we can write

s −
∑ℓ

j=1 r
′
jm

′
j =

∑k
i=1 rimi for some r1, . . . , rk ∈ R. Thus, s =

∑k
i=1 rimi +

∑ℓ
j=1 r

′
jm

′
j . Hence S

can be generated by the elements m1, . . . ,mk,m
′
1, . . . ,m

′
ℓ. Since each R-submodule of M is finitely

generated, we conclude that M is Noetherian. □

As a corollary of the previous proposition, we can obtain that the direct sum of finitely many
Noetherian R-modules is also Noetherian.

Corollary 34. Let M1, . . . ,Mn be R-modules. If M1, . . . ,Mn are Noetherian, then M1 ⊕ · · · ⊕Mn is
Noetherian.

Proof. It suffices to prove the statement for n = 2. It is clear that M1
∼= M1 ⊕ 0. Also, since the

projection M1 ⊕M2 → M2 has kernel M1 ⊕ 0, it follows from the First Isomorphism Theorem that
M2

∼= (M1 ⊕M2)/(M1 ⊕ 0). Since both M1 and M2 are Noetherian, Proposition 33 guarantees that
M1 ⊕M2 is Noetherian. □

We have pointed out before that not every finitely generated module is Noetherian. However, finitely
generated modules over Noetherian rings are Noetherian, as the following proposition indicates.

Proposition 35. Let M be a finitely generated R-module. If R is Noetherian, then M is Noetherian.

Proof. Take m1, . . . ,mk ∈ M such that M = Rm1 + · · · + Rmk, and consider the map φ : Rk → M
given by the assignment (r1, . . . , rk) 7→ r1m1 + · · · + rkmk. Clearly, φ is a surjective R-module
homomorphism, and so the First Isomorphism Theorem ensures that M ∼= Rk/ kerφ. Now observe
that Rk/ kerφ is a Noetherian R-module because direct sums and quotients of Noetherian modules
remain Noetherian by Corollary 34 and Proposition 33, respectively. Hence M is Noetherian. □
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Nakayama’s Lemma. The main purpose of this section is to prove Nakayama’s Lemma, which is
an important result of commutative algebra that we shall be using in future lectures. Let M be an
R-module. If I is an ideal of R, then

IM :=
{ n∑

i=1

rimi : r1, . . . , rn ∈ I and m1, . . . ,mn ∈ M
}

is an R-submodule of M . Let us argue the following useful result, known as Nakayama’s Lemma.

Lemma 36 (Nakayama’s Lemma). Let R be a commutative ring with identity, and let I be an ideal
of R. Then the following statements are equivalent.

(a) I is contained in every maximal ideal of R.

(b) If M is a finitely generated R-module such that IM = M , then M = {0}.
(c) If S is a submodule of a finitely generated R-module M such that IM + S = M , then S = M

Proof. (a) ⇒ (b): Suppose that M is a finitely generated R-module such that IM = M . Now assume,
by way of contradiction, that M ̸= {0}. Write M = Rm1 + · · ·+Rmn for m1, . . . ,mn ∈ M assuming
that n ∈ N is taken as smallest as possible. Since M ̸= {0}, we see that m1 ̸= 0. As m1 ∈ M = IM ,
we can take a1, . . . , an ∈ I such that m1 =

∑n
i=1 aimi. Then (1− a1)m1 =

∑n
i=2 aimi. Since a1 ∈ I

belongs to every maximal ideal, one can easily see that 1−a1 ∈ R×. This implies that n ≥ 2 and also
that a1 =

∑n
i=2(1− a1)

−1aimi, which contradicts the minimality of n.

(b) ⇒ (c) Let M be a finitely generated R-module, and let S be an R-submodule of M satisfying
IM + S = M . Then M/S is also a finitely generated R-module. In addition, since IM + S = M , it
follows that M/S = (IM + S)/S = I(M/S). Therefore M/S is trivial by our hypothesis in part (b),
which implies that S = M .

(c) ⇒ (a) Let J be a maximal ideal of R. Then J is an R-submodule of the finitely generated
R-module of R. Since IR+ J is an ideal of R containing the maximal ideal J , either IR+ J = R or
IR+ J = J . Since J ̸= R, part (c) ensures that IR+ J ̸= R. As a result, I + J = IR+ J = J , which
implies that I ⊆ J . □

Exercises

Exercise 1. Prove that every finite integral domain is a field.

Exercise 2. Prove that Z[
√
−5] is not a UFD.

Exercise 3. Prove that Z
[
1+

√
−11
2

]
is a Euclidean domain.

Exercise 4. Set R := Z
[
1+

√
−19
2

]
.

(1) Prove that R is not a Euclidean domain.

(2) Prove that R is a PID.

Exercise 5. Chinese Remainder Theorem...

Exercise 6.

(1) Find a Noetherian domain that is not a UFD.

(2) Find a UFD that is not a Noetherian domain.

Exercise 7. Let M be a Noetherian R-module. Prove that any surjective R-module endomorphism
of M is an isomorphism. Argue that the same does not hold if one replaces surjectivity by injectivity.
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Exercise 8. Prove that every Noetherian ring is atomic.

Exercise 9. Let R be a Noetherian ring, and let M1 and M2 be finitely generated R-modules. Prove
that HomR(M1,M2) is a finitely generated R-module.
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