AN OVERVIEW OF RINGS AND MODULES

FELIX GOTTI

PRELIMINARIES

General Notation. In what follows, P, N, and Ny denote the sets of primes, positive integers, and
nonnegative integers, respectively. As it is customary, we let Z, QQ, and R denote the set of integers,
rational numbers, and real numbers, respectively. In addition, for any b, ¢ € Z with b < ¢, we let [b, ]
denote the discrete interval from b to c:

[b,c] ={ne€Z:b<n<c}

Commutative Semigroups and Abelian Groups. A binary operation on a set S is a function
x: 5 xS — S. When x si a binary operation on a set .S, it is customary to write s *t instead of x(s, t)
for any s,t € S. A pair (5, *), where S is a set and * is a binary operation on S is called a semigroup
provided that the operation * is associate: r* (s*t) = (r*s) «t for all r,s,¢ € S.

Let (S, %) be a semigroup. An element e € S is called an identity element of S if exs = sxe = s for
all s € S. Every semigroup has at most one identity element: indeed, if e;,e5 € S are both identity
elements, then e; = €1 *x ea = e3. The semigroup (S, *) is said to be commutative if st =t * s for all
s,t € S. A semigroup having an identity element is called a monoid.

Let (M, %) be a monoid with identity element denoted by e, and let us denote (M, x) simply by M.
An element u € M is called invertible or a unit if u*v = v*u = e for some v € M, in which case such
an element v is called an inverse of u. As the identity element e € M satisfies e x ¢ = e, it is its own
inverse and, therefore, a unit. In a monoid, every unit has a unique inverse: indeed, if vi,v9 € M are
two inverses of a unit u, then v1 = vy % (u* v9) = (v1 * u) * vo = va. The monoid M is called a group
if every element of M is a unit. A group is said to be abelian if it is a commutative monoid.

A subset S of M is called a submonoid of M if S contains the identity element of M and is closed
under the operation of M, which means that b*c € S for all b,c € S. A submonoid of M which is
a group is called a subgroup of M. If S is a submonoid (resp., a subgroup) of M such that S # M,
then S is called a proper submonoid (resp., subgroup) of M. It is routine to prove that the property
of being submonoids of a given monoid is preserved under taking arbitrary intersections.

Let N denote a monoid (N, ") with identity element ey. A function ¢: M — N is called a monoid
homomorphism if p(e) = en and @(b* c) = p(b) " p(c) for all b,c € M. If p: M — N is a bijective
homomorphism, then ¢ is called a monoid isomorphism and, in this case, we say that the monoids M
and N are isomorphic. If both M and N are groups, a monoid homomorphism ¢: M — N is called
a group homomorphism, and a bijective group homomorphism is called a group isomorphism.

Let (G, *) be an abelian group with identity element e, and let H be a subgroup of G. For each
g € G, the subset {g«xh : h € H} of G, which is denoted by g x H, is called a coset of G by H. Let
G/H denote the set consisting of all the cosets of G by H, and define " on G/H as follows:

g H +" goH = (g1 % go) x H

for any cosets g1 H and goH of G/H. Tt is routine to verify that *’ is well defined and also that G/H
is an abelian group with respect to *’, which is called the quotient group of G by H. The binary
1
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operation of the quotient group G/H is often denote as that of G, in this case, *. The following
theorem is known as the First Isomorphism Theorem.

Theorem 1. Let G and G’ be abelian groups (multiplicatively written), and let ¢: G — G’ be a group
homomorphism. Then ¢(G) and ker ¢ := {g € G : p(g) = 1} are subgroups of G' and G, respectively,
In addition, G/ker ¢ and o(G) are isomorphic abelian groups.

Proof. This is routine, and we leave it as an exercise. O

1. COMMUTATIVE RINGS: HOMOMORPHISMS AND IDEALS

1.1. What is a Commutative Ring? We are in a position to bring the definition of a commutative
ring with identity, the most relevant algebraic objects in the scope of this exposition.

Definition 2. A triple (R,+,-), where R is a set and + and - are two binary operations on R, is
called a ring if the following conditions hold:

e (R,+) is an abelian group,
e (R,-) is a semigroup, and
er-(s+t)=r-s+r-tand (s+1t)-r=s-r+t-rforallrs,teR.

Let (R, +, ) be a ring and, from now on, let us denote this triple simply by R (this is customary in
the literature). The identity of the monoid (R, +), is denoted by 0 and called the zero element of R or
simply zero. For all r € R, the equality 0-r = 0 holds: it can be deduced from 0-r = (0+0)-r = 0-r+0-r,
as 0-r has an additive inverse. Similarly, »-0 = 0 for all »r € R. For r, s € R, we write rs instead of r- s
if we see not risk of confusion. We say that R is commutative if the semigroup (R, -) is commutative.
In addition, we say that an element of R is an identity if it is an identity of the semigroup (S, -).
Thus, if R contains an identity, then it must be unique and we denote it by either 1 or 1 and refers
to it as the identity element. In the scope of this exposition, we are only interested in commutative
rings with identity, and we tacitly assume that the identity is not the zero element (otherwise, R is a
singleton, which is not an interesting case to consider).

For a commutative ring R with identity, we let R* denote its group of units (i.e., invertible elements)
of R. For r,;s € R, we say that s divides r and write s |g 7 if 7 = st for some ¢ € R. Elements r,s € R
are associates if s = ur for some u € R*.

An additive subgroup S of R is called a subring if S is closed under multiplication and contains
1. Clearly, a subring of R is a commutative ring with identity under the binary operations it inherits
from R.

1.2. Ideals. Let R be a commutative ring with identity 1. An additive subgroup I of R is called an
ideal if ra € I for all r € R and a € I. The intersection of ideals of R is again an ideal. We can also
add, multiply, and take quotients of ideals. Let I and J be ideals of R. The set

I+J:={a+b:aclandbecJ}

is an ideal of R, which is called the sum of I and J. The sum of finitely many ideals is defined
similarly. If I = Ra for some a € R, then I is called principal, in which case, we also write I = (a).
More generally, if I = Ray + -+ + Ra, for some aq,...,a, € R, then I is called finitely generated.
The set

IJ::{zn:aibi:neN, a el andbieJ}

i=1
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is an ideal of R, which is called the product of I and J. We can naturally extend this to the product
of finitely many ideals and, accordingly, we let I™ denote the product of n copies of I and call it the
n-th power of 1. It is clear that IJ C I N J. Finally,

(J:I):={reR:rICJ}

is also an ideal of R, and it is often called the colon (or the quotient ideal) of J by I. The verification
that INJ, I+ J, IJ, and (J : I) are ideals of R is routine, and we leave this task to the reader.

1.3. Quotients and Homomorphisms. Ideals are quite relevant in commutative ring theory: in-
deed, we can quotient R by a given ideal I to obtain another ring R/I that is often simpler than R
but inherits a significant amount of algebraic information from R. To formally describe such quotient
ring, let I be an ideal of R and consider the following . The quotient group R/I is a ring under the
operation (r+ I)(s+ I) := rs + I, which is called the quotient ring of R by I. It is clear that R/I is
a commutative ring with identity element 1+ I.

The group homomorphism 7: R — R/I is indeed a ring homomorphism. If f: R — S is a ring
homomorphism, then ker f = {r € R: f(r) = 0} is an ideal of R, the set f(R) is a subring of .S, and
the assignment r + ker f — f(r) determines a ring isomorphism R/ ker f = f(R). On the other hand,
if I C ker f, then f factors through =, that is, there exists a unique ring homomorphism ¢: R/I — S
such that f = pom.

If I is an ideal of R and S is a subring of R, then I 4+ S is a subring of R and I N S is an ideal
of S. In addition, it is not hard to verify that the assignment s — s + I determines a surjective
ring homomorphism S — (I + S5)/I with kernel I NS (this is often called the Second Isomorphism
Theorem). On the other hand, if J is an ideal of R with I C J, then the assignment r + 1 — r + J
determines a surjective ring homomorphism R/I — R/J with kernel J/I (this is often called the
Third Isomorphism Theorem). Finally, the assignment T+ T'/I for any subring (resp., ideal) T of R
induces an inclusion-preserving bijection from the set of all subrings (resp., ideals) of R containing I
to the set of all subrings (resp., ideals) of R/I.

Prime and Maximal Ideals. A proper ideal P of R is prime if whenever I.J C P for ideals I and
J in R, either I C P or J C P. In addition, a proper ideal M of R is mazimal if for any ideal I with
M CICR,either ] =M or I = R.

Proposition 3. Let R be a commutative ring with identity, and let I be an ideal of R. Then the
following statements hold.

(1) T is prime if and only if R/I is an integral domain.

(2) I is mazimal if and only if R/I is a field.
Proof. (1) Since r € I if and ounly if r + I = I for all r € R, this part follows immediately from the
fact that rs € I if and only if (r+1I)(s+ 1) =1 for all r,s € R.

(2) It is clear that a commutative ring with identity is a field if and only if it has precisely two
ideals (the trivial ideals). Thus, this part is a direct consequence from the fact that the assignment
J — J/I induces a bijection from the set of ideals of R containing I to the set of ideals of R/I. [

Corollary 4. FEvery mazximal ideal is prime.

Not every prime ideal, however, is maximal. For instance, in the ring Z[z] the ideal (x) is prime,
but it is not maximal because () is strictly contained in the ideal (z,2), which is a proper ideal of
Z|z].
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2. INTEGRAL DOMAINS FROM THE FUNDAMENTAL THEOREM OF ARITHMETIC

Let R be an integral domain, that is, a commutative ring with identity with no nonzero zero-
divisors. We say that a nonzero nonunit » € R is irreducible if whenever r = wv for some u,v € R
either u € R* or v € R*.

Example 5. The prototypical integral domain is Z, the ring of integers.

According the most standard version of the Fundamental Theorem of Arithmetic (FTA), every
nonzero integer z with z ¢ {£1} can be factored as z = p; - - - p,, for some py,...,p, € £P and such a
factorization is unique (up to permuting and multiplying the factors by +1).

UFDs, PIDs, and Euclidean Domains

A nonzero element r € R\ R* is prime if whenever r |g st for some s,t € R either r |g s. It is not
hard to verify that every prime is irreducible (prove this!).

Definition 6. An integral domain is a wunique factorization domain (UFD) if for every nonzero
r € R\ R*, the following statements hold:

(1) r =py - pm for some irreducibles py,...,pm € R, and

(2) ifr=q gy for irreducibles g1, . .., g, € R, then n = m and there is a bijection ¢: [1,m] —
[1,m] such that g,(;) and p; are associates for every j € [1,m].

Every field is trivially a UFD, and Z is a UFD by the Fundamental Theorem of Arithmetic. We
will prove in the next subsection that the rings of polynomials Z[z] and Z[z,y] are UFDs.

Proposition 7. Let R be a UFD. An element of R is prime if and only if it is irreducible.

Proof. In every integral domain, primes are irreducibles, and we leave the verification of this fact to
the reader. Now suppose that p € R is an irreducible. To check that p is prime, take r,s € R such
that p |gr rs, and then write pt = rs for some ¢ € R. As R is a UFD, we can factor ¢, r, and s into
irreducibles to obtain factorizations of the same element in both sides of the equality pt = rs. Since
p is irreducible and R is a UFD, p is associate with one of the irreducibles in the factorization of rs,
and so either p |g r or p |g s. Hence p is prime. d

Integral domains whose ideals are principal play an important role in commutative ring theory.

Definition 8. An integral domain R is called a principal ideal domain (PID) if every ideal of R is
principal.

Every field is clearly a PID. It is not hard to verify that Z is a PID, although it follows from
Theorem 15 below. We will prove in the next theorem that every PID is a UFD. First, we need to
collect the following temporary result (once we prove Theorem 10, this lemma will become a special
case of Proposition 7).

Lemma 9. If R is a PID, then every irreducible in R must be prime.

Proof. Let p be an irreducible in R, and let I be an ideal containing Rp. Since R is a PID, I = Ra for
some a € R. After writing p = ab for some b € R, we see that either a € R* or b € R*. Accordingly,
we find that I = R or I = Rp. Hence the only ideal properly containing Rp is R, which means that
Rp is a maximal ideal and, therefore, a prime ideal. Hence p is prime. O

Theorem 10. Every PID is a UFD.
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Proof. Let R be a PID. Suppose, by way of contradiction, that there is a nonzero element ro € R\ R*
that does not factor into irreducibles. So 79 = r1$1 for some r1,s1 € R\ R* such that r; does not
factor into irreducibles. As before, we can write r1 = rosy for some ry,89 € R\ R* such that ry
does not factor into irreducibles. Going on in a similar fashion, we can construct sequences (7 )nen,
and (Sp)nen with r,, s, € R\ R* such that r,, = rp415,41. Thus, the sequence (Rry)nen, of ideals
satisfies that Rr, C Rr,4+1 and, therefore, I = UHGNO Rr, is an ideal. Since R is a PID, there is
an a € R such that I = Ra. Take an m € N such that a € Rr,,. This implies that I = R,,, and
so Rrp,41 = Rrp,. In this case, ry, and 7,41 are associates, which contradicts that Rr,; strictly
contains Rr,. Hence every nonzero element of R\ R* is a product of irreducibles.

Let us prove now that every nonzero element in R\ R* has a unique factorization up to permutation
and associate. To do so we use induction on the number of irreducible factors (counting repetitions).
If a nonzero r in R\ R* has a factorization consisting of only one irreducible, then r itself must be
irreducible and r» = ¢ - - - q,, for irreducibles ¢, ..., g, immediately implies that n = 1 and ¢; = r.
So assume that there is an m € N such that every nonzero in R\ R* having a factorization with at
most m irreducibles (counting repetitions) must have a unique factorization. Take r € R\ R* such

that r = p;1--- P41 for irreducibles p1,...,pmy1 in R. Suppose that r = ¢ - - - ¢, for irreducibles
q1s---yQn. Since ppyy1 is prime by Lemma 9, one of the irreducibles ¢, ..., ¢, is divisible by p;,4+1.
After relabeling ¢1, ..., ¢g,, one can assume that p,,+1 |r ¢, and so that p,,+1 and ¢, are associates.
Take u € R* such that ¢, = upp+1. Then p1---py = (ug1)g2 - - ¢n—1. By induction hypothesis,
n—1=m and we can relabel ¢, ..., ¢n such that p; and ¢; are associates for every i € [1, m]. Hence
R is a UFD. O

The converse of Theorem 10 does not hold.

Example 11. Consider the ring Z[z]. We will show in the next section that R[z] is a UFD provided
that R is a UFD. Therefore Z[z] is a UFD. On the other hand, one can easily verify that the ideal
(2,x) is not principal (check this!). Hence Z[z] is not a PID.

The Euclidean division algorithm is an important tool we have at our disposal in Z. We can consider
generalizations of the ring Z where still we can perform the Euclidean division algorithm. Such rings
are called Euclidean domains.

Definition 12. An integral domain R is called a Fuclidean domain if there is a map N: R — Ny,
called a nmorm, such that N(0) = 0 and for any elements a,b € R with b # 0, there are elements
q,r € R such that a = ¢b + r and either r = 0 or N(r) < N(b).

Every field F is a Euclidean domain under the norm N(a) = 0 for every o € F (indeed, any
norm can be taken). In addition, Z is a Euclidean domain under the norm N(m) = |m|. The ring
Z[i) :=={a+ib:a,b e Z} of Gaussian integers is also a Euclidean domain.

Example 13. Let us argue that the ring Z[i] of Gaussian integers is a Euclidean domain. Consider
N: Z[i] — Ny defined by N(a+ib) = a®>+b>. As N(a) = aa, it is clear that N(ajaz) = N(a1)N(az).
Take «, 5 € Z]i] such that § # 0, and write a/3 = g1 + g2, where ¢, ¢2 € Q. Now take m,n € Z such
that |¢1 —m| <1/2 and |g2 —n| < 1/2, and then set ¢ = m +in € Z[i] and r = a — ¢f € Z][i]. Since
Q N(B
N = NEN(§ - a) = X&) — P +1aa — ) < 2 < (),

we obtain that Z[i] is a Euclidean domain.
Polynomial rings over fields are also examples of Euclidean domains.

Proposition 14. If F' is a field, then F[z] is a Fuclidean domain.
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Proof. Let F be a field. Define N: F[z] — Ny by N(0) = 0 and N(p(z)) = degp(z). Now, let
f(z) and g(x) be any two polynomials in F[z] with g(x) # 0. We want to find ¢(x) and r(x) in
Flz] with f(z) = g(x)q(x) + r(z) such that either r(xz) = 0 or N(r(z)) < N(g(z)). We proceed by
induction on deg f(z). If deg f(x) = 0, then f(x) € F, and so we take ¢(z) = r(z) = 0if f(z) =0
or qg(xz) = f(x)/g(z) and r(z) = 0 if f(x) € F*. Therefore assume that n := deg f(z) € N and
also that the statement of the proposition follows for any pair of polynomials f/(z), ¢'(z) € Flz] with
deg f'(z) < n and ¢'(x) # 0. If n < degg(z), then we simply take ¢(x) = 0 and r(z) = f(x). Thus,
we assume that deg f(z) > deg g(x).

Set m := degg(z), and let a,, and b,, be the leading coefficients of f(x) and g(x), respectively.
Observe that f1(x) := f(z)—(anb;,!)z" ™g(x) has degree strictly less than deg f(z). By the induction
hypothesis, we can find polynomials ¢;(z) and r(x) in Flz| with fi(z) = g(z)¢1(z) + r(x) such that
either r(x) = 0 or degr(z) < deg g(z). Now, set ¢(z) := q1(x) + (anb,,!)z"~™, and observe that

f(@) = fi(@) + (anby )" "g(x)
= 9(@)q1(2) + (@) + (anby, )z "g(x)
= 9(x)q(x) +r(z).

Hence our proof is complete. O
We proceed to show that every Euclidean domain is a PID.
Theorem 15. Every Euclidean domain is a PID.

Proof. Let R be a Euclidean domain with norm N: R — Ny. Take a nonzero ideal I of R. Let b
be a nonzero element of I having minimum norm. We claim that I = Rb. Clearly, Rb C I. For the
reverse inclusion, consider a € I. Since R is a Euclidean domain, a = ¢b 4 r for some ¢, € R, where
either r = 0 or N(r) < N(b). Since r = a — ¢b € I, the minimality of N(b) ensures that r = 0, and
so a = qgb € I. As a result, the inclusion I C Rb holds and, therefore, I is principal. Hence R is a
PID. O

We conclude this subsection emphasizing that not every PID is a Euclidean domain. However,
examples witnessing this are not that easy to construct. One of the most tractable examples is Z[w],
where w := (1 +iv/19)/2. The fact that Z[w] is a PID that is not a Euclidean domain is discussed
in [1, Subsections 8.1 and 8.2].

3. PoLyNOMIALS RINGS

The field of fractions of an integral domain is a construction that allows us to create a field from
an integral domain in the same fashion that Q is constructed from Z. Let R be an integral domain,
and consider the set

S :={(a,b) | a,b € R and b # 0}.
Also, consider the binary relation ~ on R defined as (a,b) ~ (¢,d) if and only if ad = bc. One can
easily check that ~ is an equivalence relation on R. Now let a/b denote the equivalence class of (a,b)
in S/ ~, and set

K = {% | a,beRandb;éO}.
We can naturally define addition and multiplication operations on K as follows:

a e _adtbe g 9.C
b d T  bd MY V4T b

ac
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for all a, b, ¢, d with bd # 0. It is routine to show that K is indeed a field, which is denoted by qf(R)
and called the quotient field (or field of fractions) of R. Furthermore, we can readily prove that the
assignment r — /1 determines a ring homomorphism R — qf(R) and also that every injective ring
homomorphism from R to a field F' can be uniquely extended to a ring homomorphism from gf(R) to
F'. This property makes qf(R) a very useful tool for studying the properties of R and its extensions.
We summarize this as the following proposition.

Proposition 16. Let R be an integral domain. Then the following statements hold.
(1) qf(R) is a field.
(2) The map v: R — qf(R) determined by r — r/1 is a ring homomorphism.

(3) If F is a field and f: R — F is a a ring homomorphism, then there evists a unique ring
homomorphism f: qf(R) — F such that f(r/1) = f(r) for every r € R.

Proof. Exercise. O

We turn our attention to rings of polynomials over UFDs. The following criterion is quite useful
to argue the irreducibility of polynomials over UFDs.

Theorem 17 (Gauss’s lemma). Let R be a UFD, and let p(z) be a polynomial in R[x]. If p(x) =
a(z)b(x) for some a(z),b(x) € qf(R)[x], then there exists ¢ € qf(R)* such that ca(x) € R[z] and
c'b(x) € R|x].

Proof. Assume that p(z) = a(z)b(z) for some a(zx),b(z) € qf(R)[z]. If a(z),b(x) € R[z], then we can
take ¢ = 1. We will assume, therefore, that this is not the case, and write dp(z) = a/(2)b'(z) for
some d € R\ R* and d/(z),V (z) € R[z]. Since R is a UFD, we can take irreducibles py, ..., p, such
that d = py - - pn. Set J = p, R[x] and observe that R[z]/J = (R/Rpy,)[z] is an integral domain, and
so J is a prime ideal of R[z]. Since (a'(x) + J)(V'(x) + J) = dp(z) + J = J, the fact that R[z]/J
is an integral domain implies that either a/(z) € J or ¥'(z) € J. Assuming the former, we obtain
that a'(x)/p, € R[z] and so the equality (d/p,)p(z) = (a'(z)/pn)V/(z) takes place in R[z]. One

can proceed similarly with the rest of the irreducibles p1,...,p,—1 in the factorization of d to find
dy,dy € R with didy = d such that both o’(z)/dy and b'(z)/d2 belong to R[x]. Now we just need to
take ¢ = dy *a'(z)/a(z). O

Corollary 18. Let R be a UFD, and let p(z) be a monzero polynomial in R[x]| such that 1 is a
greatest common divisor of the coefficients of p(x). Then p(x) is irreducible in R[x] if and only if it
is @rreducible in qf(R)[x].

We are in a position now to prove the following promised result.
Theorem 19. If R is a UFD, then R[z] is a UFD.

Proof. Let R be a UFD, and take a nonzero polynomial p(xz) € R[z]. It is not hard to see that the
irreducibles of R are still irreducibles in R[z]. Therefore if p(z) € R, then p(z) factors uniquely into
irreducibles. Accordingly, assume that p(z) is a non-constant polynomial. In addition, if d is a greatest
common divisor of the coefficients of p(z) and p’(x) := p(z)/d, then p(x) = dp’(z) factors uniquely into
irreducibles in R[z] provided that p’(z) factors uniquely into irreducibles in R[z]. So we can further
assume that 1 is a greatest common divisor of the coefficients of p(z). As qf(R)[z] is a Euclidean domain
and so a UFD, p(z) = p)(z)---pl,(x) for unique irreducibles p(z),...,p,,(z) in qf(R)[z]. It follows
now by Gauss’s lemma that p(x) = p1(x) - - - prm (2), where the polynomials py (), ..., pm(x) € Rlx] are
F-multiples of p}(z),...,pl,(x), respectively. Since 1 is a greatest common divisor of the coefficients
of p(z), the same holds for py(z),...,pm(x). So it follows from Corollary 18 that pi(x),..., pm(x) are
irreducibles in R[z].
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In order to argue the uniqueness, suppose that p(z) = ¢1(x)...¢,(x) for irreducibles polynomials
q1(z), ..., qn(x) in R[z]. Since 1 is a greatest common divisor of the coefficients of p(z), the same holds
for ¢1 (), ..., qn(x). In particular, ¢;(x), ..., ¢,(z) are non-constant, and it follows from Corollary 18
that they are irreducibles in qf(R)[z]. Since qf(R)[z] is a UFD, n = m and, after relabeling the
indices of ¢1(z),...,qm(x), we obtain that a;p;(x) = b;q;(x), where a;,b; € R, for every i € [1,m].
Fix ¢ € [1,m]. Since 1 is a greatest common divisor of the coefficients of g;(z), every prime in a
factorization of a; in R, which is also a prime in R[z], must divide b;, and so a; divides b; in R.
Similarly, b; divides a; in R, and so b; = ua; for some v € R*. This implies that p;(z) and ¢;(z) are
associates in R[z]. Hence the uniqueness follows, and so R[z] is a UFD. O

When used in tandem, Corollary 18 and Proposition 20 (known as Eisenstein’s criterion) are prac-
tical tools to argue that certain polynomials are irreducibles.

Proposition 20. Let R be an integral domain, and let p(x) = anx™ + -+ + a1 + ag be a polynomial
in R[x]. If there exists a prime ideal P of R such that

(1> an ¢ P7
(2) ag,...,an_1 € P, and
(3) ao ¢ P27

then p(x) cannot be written in R[x] as a product of two non-constant polynomials. In addition, if 1 is
a greatest common divisor of the coefficients of p(x), then p(x) is irreducible.

Proof. Suppose, by way of contradiction, that p(z) = a(z)b(z) for non-constant polynomials a(z), b(z) €
R[z]. Then d'(z)V'(x) = (an + P)z™ in (R/P)[z], where a/(z) and b'(z) are the images of a(x) and
b(x) under the canonical homomorphism R[z] — (R/P)[z]. Since (R/P)[x] is an integral domain and
(an, + P)z™ is nonzero in (R/P)[z], both a'(x) and b’'(z) are nonzero. This, together with the fact
that (a, + P)x™ is a monomial, ensures that the constant coefficients of both a’(x) and b'(x) equal P
in (R/P)[x], that is, a(0) € P and b(0) € P. However, this contradicts that ag ¢ P2. O

We conclude with an application of Eisenstein’s criterion.

Example 21. For each p € P, we will argue that the polynomial f(z) = 2P~*+---+x+1 is irreducible
in Q[z]. Since f(z) is monic, in light of Corollary 18 it suffices to show that f(z) is irreducible in Z|x].
Observe that f(z) is irreducible if and only if f(z + 1) is irreducible. Since 2P —1 = (z — 1) f(x), we
see that

(3.1) flz+1)= % = Z <£>mk1.
k=1

From the summation in (3.1), it is clear that f(x+ 1) is a monic polynomial having all its non-leading
coefficients divisible by p. In addition, the constant coefficient of f(x 4 1) is p, which is not divisible
by p?. So by virtue of Eisenstein’s criterion, f(x + 1) is irreducible, as desired. Moreover, for every
n > 2, it is easy to verify that the polynomial "~ ! 4---+x +1 is irreducible if and only if n is prime.



AN OVERVIEW OF RINGS AND MODULES 9

4. NOETHERIAN RINGS

In this subsection, we introduce one of the most relevant classes of rings in commutative algebra,
Noetherian rings.

Definition 22. A commutative ring R with identity is Noetherian if every ascending chain of ideals
of R eventually stabilizes; that is, for every sequence (I,)nen of ideals of R with I,, C I,,41 for every
n € N, there exists N € N such that I, = Iy for every n > N.

The term “Noetherian” honors Emmy Noether, who first investigated chain conditions on commu-
tative rings in her celebrated paper [3]. We can characterize Noetherian rings as follows.

Proposition 23. For a commutative ring R, the following statements are equivalent.
(a) R is Noetherian.
(b) Every nonempty set of ideals of R contains a mazimal element (under inclusion).

(¢) FEwvery ideal of R is finitely generated; that is, if I is an ideal of R, then there exist ay,...,a, €
R such that I = Rai + -+ + Ra,,.

Proof. (a) = (b): Assume, by way of contradiction, that there is a nonempty set . consisting of
ideals of R that does not contain a maximal member. Take I; € .#. Since I; is not a maximal member
in ., we can take Iy € .% such that I; C I5. Since I is not a maximal member of ., we can take
I35 € . such that I C I3. Continuing in this matter we can produce an ascending chain (I,,)nen that
does not stabilize, which contradicts that R is Noetherian.

(b) = (c): Let I be an ideal of R, and let .% be the set of finitely generated ideals of R contained in
I. Observe that % is not empty because it contains the zero ideal. Therefore .# contains a maximal
member M by assumption. We can see now that I = M as, otherwise, for any « € I'\ M the existence
of the finitely generated ideal M + xR would contradict the maximality of M. Hence [ is finitely
generated.

(c) = (a): Let (In)nen be an ascending chain of ideals of R. Then I := J,, oy In is also an ideal of
R, and since R is Noetherian we can write I = Ra; + - - - + Ra, for some a1, ...,a, € I. After taking
N € N such that ay,...,a, € Iy, we see that I C Iy and so that Iy = I. This clearly implies that
I, =1 for every n > N, and so (I,,)nen eventually stabilizes. Hence R is Noetherian. O

Example 24. PIDs and, in particular, Fuclidean domains are Noetherian rings. In addition, the
rings of integers of algebraic number fields are Noetherian, even though many of them are not PIDs.
On the other hand, not every UFD is Noetherian; for instance, Z[z1,xo,...] is a UFD but its prime
ideal (x1,x9,...) is not finitely generated.

It is not hard to verify that quotients and, therefore, homomorphic images of Noetherian rings are
Noetherian rings.

Proposition 25. Let R be a Noetherian ring. Then R/I is also a Noetherian ring for every ideal T
of R.

Proof. Every ideal of R/I has the form J/I, where J is an ideal of R containing I. Fix an ideal
J/I of R/I. Since R is Noetherian, we can take r1,...,7, € R such that J = (ry,...,r,). Hence
J/I=(r1+1,...,7,+I), and so it is a finitely generated ideal. Thus, R/I is also Noetherian. [

A crucial tool to produce Noetherian rings is Hilbert Basis Theorem, which was established by D.
Hilbert [2] back in 1890.

Theorem 26 (Hilbert Basis Theorem). If R is a Noetherian ring, then R[x] is also a Noetherian
Ting.



10 F. GOTTI

Proof. For a nonzero f € R[z|, we let LC(f) denote the leading coefficient of f. Let J be an ideal of
Rlx]. For each n € Ny, consider the set

I, :={0}U{LC(f): f € J\ {0} and deg f =n}.

Using that J is an ideal of R[x], we can easily verify that I, is an ideal of R for every n € Ny. In
addition, observe that (I,)nen, is an ascending chain of ideals of R; indeed, it follows from the fact
that for each nonzero f € R[z], the element LC(xf) € I,41 provided that LC(f) € I,. As Ris a
Noetherian ring, I,, is generated by a finite set L,, for every n € Ny and there is an m € N such that
I, = I, for every n > m. For each n € Ny and ¢ € L,, there exists g. € J with degg. = n such
that LC(g.) = ¢. Consider the subset L := {g.: ¢ € |J"; L,} of J, and let us argue that J can be
generated by L.

Let J; be the ideal generated by L. As L C J, it follows that J, C J. For the reverse implication,
we will argue that every nonzero polynomial f in J belongs to J; by induction on the degree of f. If
deg f =0, then f = LC(f) € Iy C J;. Now assume that deg f > 1 and write f = c¢pz™ 4+ -+ c12+¢o
for some cy, ..., c, € R with ¢, # 0, in which case, ¢, € I,,. We consider the following two cases.

Case 1: n < m. Write ¢, = Zle ril; for some r1,...,r, € Rand ¢q,...,{; € L,,. Since n < m,
the polynomial g := Ele rige, belongs to J, and has degree at most n. Indeed, degg = n because
the coefficient of 2™ in g is ¢,,. As Jy C J, the polynomial f — g belongs to J and, in addition, it has
degree strictly less than n. Hence f — g € J; by the induction hypothesis, and so f must belong Jj.

Case 2: n > m. In this case, ¢, € I,, = I,,, and we can write ¢, = Zle ril; for somery,...,rp € R
and fq,...,0, € Ly,. Consider the polynomial g := Zle r:ge,, and note that it belongs to J; and it
has degree at most m. Also, the coefficient of 2™ in g is ¢,. Therefore ™™g is a polynomial of J,
of degree at most n, which ensures that degz"~""g = n because the coefficient of ™ in z" g is c,.
This implies that f — ™ "™g is a polynomial in J of degree less than n, and then it follows by the
induction hypothesis that f — 2" ™g € J,. Hence f must belong to Jy.

As aresult, J C Jy, and so J is finitely generated. Thus, we can conclude that R[z] is a Noetherian
ring. O

The following corollary is an immediate consequence of Hilbert Basis Theorem.

Corollary 27. If R is a Noetherian ring, then R[x1,...,x,] is a Noetherian ring.

PRELIMINARY ON MODULES

Definitions and Examples. Modules over commutative rings are generalizations of vector spaces
that play a fundamental role in commutative algebra and, in particular, in ideal theory. For the rest
of this section, let R be a commutative ring with identity.

Definition 28. An additive abelian group M is a module over R (or an R-module) if there is an action
of R on M, that is, a map R x M — M given by (r,m) — rm, satisfying the following properties:
(1) r(mq1 4+ mz) = rmy + rmy for all r € R and my,ms € M,
(2)
(3) (rire)m = r1(ram) for all 71,79 € R and m € M, and
(4) Im =m for all m € M.

(ri +r2)m =rim+rom for all r1,79 € R and m € M,
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It is clear from the above definition that vector spaces are precisely modules over fields. On the
other hand, it is not hard to see that there is a canonical action of Z over any abelian group A turning

A into a Z-module, namely, na := a + - -+ + a (the addition of n copies of a) and (—n)a := —na for
alln € Ny and a € A. Also, for n € N, it is easy to verify that the additive abelian group R™ is an
R-module over R under the action r(ay,...,a,) = (rai,...,ra,). Under this action, R™ is called the

free module of rank n over R.

Let M be an R-module. A subgroup N of M is called an R-submodule of M if it is is closed under
the action of R, that is, rn € N for all r € R and n € N. One can readily prove that N is a submodule
of M if and only if N is nonempty and z+ry € N for all » € R and z,y € N. Every commutative ring
R is an R-module over itself, and every ideal I of R is clearly an R-submodule. If N is an R-submodule
of M, then the quotient group M/N is an R-module under the action r(m + N) := rm + N.

For R-modules M; and Ms, a map p: M; — Ms is called an R-module homomorphism if ¢ is a
group homomorphism satisfying that ¢(rm) = re(m) for allr € R and m € M. In this case, ker ¢ is an
R-submodule of M7, and it follows that ¢ is injective if and only if ker ¢ = {0}. When ¢ is bijective, it
is called an isomorphism of R-modules. The canonical group isomorphism M/ ker ¢ = ¢(M;) (from
the First Isomorphism Theorem) is, indeed, an isomorphism of R-modules. If N; and Ny are two
R-submodules of M, then the subgroups Ny + Ny and N N Ny are R-submodules, and the canonical
group isomorphism (Ny + N3)/Ny = Ny /(N1 N N3) (from the Second Isomorphism Theorem) is also
an isomorphism of R-modules.

Finitely Generated Modules and Noetherian Modules. The R-module M is finitely generated
if there exist mq,...,m, € M such that M = Rmy + --- + Rm,,. Clearly, every commutative ring R
with identity is a finitely generated R-module over itself (generated by 1). In addition, quotient and
so homomorphic images of finitely generated R-modules are finitely generated.

Proposition 29. If N is an R-submodule of a finitely generated R-module M, then the quotient M/N
is also a finitely generated R-module.

Proof. See the proof of Proposition 25. O
Being finitely generated is transitive in the following sense.

Proposition 30. Let R, S, and T be commutative rings with identities. If S is a finitely generated
R-module and T is a finitely generated S-module, then T is a finitely generated R-module.

Proof. Since S is a finitely generated R-module, we can take s1,..., s, € S such that S =" Rs;.
In addition, since T is a finitely generated S-module, we can take t1,...,t, € T such that T =
Y5y Sty Thus, T = 30 (Y7L, Rsi)t; = >2i%, >0 Rsitj, whence T is a finitely generated
R-module. 0

An R-module M is called Noetherian if every R-submodule of M is finitely generated. Not every
finitely generated R-module is Noetherian. For instance, although the ring R := Z[x, : n € N]
in countably many variables over Z is a finitely generated R-module, its ideal (z1,zo,...) is an R-
submodule that is not finitely generated.

Example 31. Let V be a finite-dimensional vector space over a field F'. Then every F-submodule of
V' is a vector space of dimension at most dim V' and, therefore, is finitely generated. As a result, V is
a Noetherian F-module.

As in the case of commutative rings, one can characterize Noetherian modules as follows.

Proposition 32. For an R-module M, the following statements are equivalent.
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(a) M is Noetherian.

(b) M satisfies the ascending chain condition (ACC) on submodules: every ascending chain of
R-submodules of M eventually stabilizes.

(¢) Every nonempty set of R-submodules of M contains a mazimal element (under inclusion,).

Proof. Exercise. O

As for commutative rings, quotients of Noetherian modules are Noetherian. Moreover, we have the
following result.

Proposition 33. Let M be an R-module, and let N be a submodule of M. Then M is Noetherian if
and only if both N and M /N are Noetherian.

Proof. Suppose first that M is Noetherian. Clearly, every R-submodule of N is also an R-submodule
of M and, therefore, is finitely generated. Hence N is Noetherian. To verify that M /N is Noetherian,
take an R-submodule S/N of M/N, where S is an R-submodule of M. Since M is Noetherian
S = Rsy + -+ + Rsy, for some s1,...,s; € S. Hence it immediately follows that S/N = R(s; + N) +
-4+ R(s + N), and so S/N is finitely generated. Thus, R/N is also Noetherian.

Conversely, suppose that both N and M/N are Noetherian R-modules. Let S be an R-submodule
of M, and let S’ be the R-submodule (S 4+ N)/N of M/N. Since both N and M/N is Noetherian,
SAN =Rmi+---+ Rmy and ' = R(m} + N) + --- + R(mj, + N) for some my,...,m; € SN N
and mf,...,m;, € S+ N. Indeed, we can assume that m},...,mj, € S. Now take s € S and write

s+ N=ri(mi+N)+---+r;(m,+N), where r},...,r, € R. As s — Zﬁ:ﬂ"}m} € N, we can write
s — E§:1 rim; = Zle r;m; for some 71,...,7, € R. Thus, s = Zle rim; + Z§:1 rim’. Hence S
can be generated by the elements my,...,mg, m},...,mj. Since each R-submodule of M is finitely
generated, we conclude that M is Noetherian. O

As a corollary of the previous proposition, we can obtain that the direct sum of finitely many
Noetherian R-modules is also Noetherian.

Corollary 34. Let My, ..., M, be R-modules. If My, ..., M, are Noetherian, then My & ---® M, is
Noetherian.

Proof. 1t suffices to prove the statement for n = 2. It is clear that M; = M; @ 0. Also, since the
projection M7 & My — M> has kernel M7 @ 0, it follows from the First Isomorphism Theorem that
My = (M, @ Ms)/(M; & 0). Since both M; and My are Noetherian, Proposition 33 guarantees that
My & M, is Noetherian. O

We have pointed out before that not every finitely generated module is Noetherian. However, finitely
generated modules over Noetherian rings are Noetherian, as the following proposition indicates.

Proposition 35. Let M be a finitely generated R-module. If R is Noetherian, then M is Noetherian.

Proof. Take mq,...,my € M such that M = Rmj + --- + Rmy, and consider the map ¢: RF 5 M
given by the assignment (ry,...,rg) — rimg + - - + rpmy. Clearly, ¢ is a surjective R-module
homomorphism, and so the First Isomorphism Theorem ensures that M = R¥/ker . Now observe
that R*/ker ¢ is a Noetherian R-module because direct sums and quotients of Noetherian modules
remain Noetherian by Corollary 34 and Proposition 33, respectively. Hence M is Noetherian. d
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Nakayama’s Lemma. The main purpose of this section is to prove Nakayama’s Lemma, which is
an important result of commutative algebra that we shall be using in future lectures. Let M be an
R-module. If I is an ideal of R, then

IM::{Zrimi:rl,...,rnElandml,...,mneM}
i=1

is an R-submodule of M. Let us argue the following useful result, known as Nakayama’s Lemma.

Lemma 36 (Nakayama’s Lemma). Let R be a commutative ring with identity, and let I be an ideal
of R. Then the following statements are equivalent.

(a) I is contained in every mazimal ideal of R.
(b) If M is a finitely generated R-module such that IM = M, then M = {0}.
(c) If S is a submodule of a finitely generated R-module M such that IM + S = M, then S = M

Proof. (a) = (b): Suppose that M is a finitely generated R-module such that ITM = M. Now assume,
by way of contradiction, that M # {0}. Write M = Rmy + - -- + Rm,, for my,...,m,, € M assuming
that n € N is taken as smallest as possible. Since M # {0}, we see that mq #0. Asmy € M = IM,
we can take ag,...,a, € I such that my = >, a;m;. Then (1 —ay)my = >, a;m;. Since a; € I
belongs to every maximal ideal, one can easily see that 1 —a; € R*. This implies that n > 2 and also
that a; = > ,(1 — a1)"'a;m;, which contradicts the minimality of n.

(b) = (c) Let M be a finitely generated R-module, and let S be an R-submodule of M satisfying
IM + S = M. Then M/S is also a finitely generated R-module. In addition, since IM + S = M, it
follows that M/S = (IM + S)/S = I(M/S). Therefore M/S is trivial by our hypothesis in part (b),
which implies that S = M.

(¢c) = (a) Let J be a maximal ideal of R. Then J is an R-submodule of the finitely generated
R-module of R. Since IR + J is an ideal of R containing the maximal ideal J, either IR+ J = R or
IR+ J =J. Since J # R, part (c) ensures that IR+ J # R. Asaresult, I +J =I1R+ J = J, which
implies that I C J. O

EXERCISES

Exercise 1. Prove that every finite integral domain is a field.

Exercise 2. Prove that Z[v/—5] is not a UFD.

Exercise 3. Prove that Z[1+ VQ_H] is a Euclidean domain.

Exercise 4. Set R := Z[Hi {19]
(1) Prove that R is not a Euclidean domain.
(2) Prove that R is a PID.

Exercise 5. Chinese Remainder Theorem...

Exercise 6.
(1) Find a Noetherian domain that is not a UFD.
(2) Find a UFD that is not a Noetherian domain.

Exercise 7. Let M be a Noetherian R-module. Prove that any surjective R-module endomorphism
of M is an isomorphism. Argue that the same does not hold if one replaces surjectivity by injectivity.
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Exercise 8. Prove that every Noetherian ring is atomic.

Exercise 9. Let R be a Noetherian ring, and let M; and Ms be finitely generated R-modules. Prove
that Homp (M7, M3) is a finitely generated R-module.
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